LTE(0)|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

LTV-3150
 0.6A Output Current, High CMR, Gate Drive Optocoupler

Description

The LTV-3150 optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 0.6A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 50 \mathrm{~A}$. For IGBTs with higher ratings, the LTV-3150 series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}$.

Functional Diagram

Features

0.6A maximum peak output current

15 kV/us minimum Common Mode Rejection (CMR) at $\mathrm{VCM}=1500 \mathrm{~V}$
3.5 mA maximum supply current (I_{cc})

Under Voltage Lock-Out protection (UVLO) with hysteresis

Wide operating range: 15 to 30 Volts (V_{cc})
Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}$.

Fast switching speed, 500ns max propagation delay
Safety approval: Pending

Application IGBT/MOSFET gate

drive Uninterruptible power supply
(UPS) Industrial Inverter
Induction heating

Truth Table

LED	$\mathbf{V}_{\text {cc }}-G N D$ (Turn-ON, +ve going)	$\mathbf{V}_{\text {cc }}$-GND (Turn-OFF, -ve going)	V_{o}
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	Low
ON	$0-11.5 \mathrm{~V}$	$0-10 \mathrm{~V}$	Low
ON	$11.5-13.5 \mathrm{~V}$	$10-12 \mathrm{~V}$	Transition
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	High

A $0.1 \mu \mathrm{~F}$ bypass Capacitor must be connected between Pin 5 and 8. (Note 8)

LITEON|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Ordering Information

Part	Option	
		Remarks
	M	DIP-8
	S	Wide Lead Spacing, DIP-8
	S-TA	Surface Mount, SMD-8, Pin 1 location at lower right of the reel
	S-TA1	Surface Mount, SMD-8, Pin 1 location at upper left of the reel

Part No. :	LTV-3150 series (REV. 1, MAY 18,2011)

L|E(O) $/$ LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Package Dimensions

8-pin DIP Package (LTV-3150)

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand).
Dimensions are in Millimeters and (Inches).

Part No. :	LTV-3150 series (REV. 1, MAY 18,2011)

LITE(O)|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Package Dimensions

8-pin DIP Wide Lead Spacing Package (LTV-3150M)

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand).
Dimensions are in Millimeters and (Inches).

Part No. :	LTV-3150 series (REV. 1, MAY 18,2011)

LTE(O)/LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Package Dimensions

8-pin DIP Surface Mount Package (LTV-3150S)

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark (Y : Thailand). Dimensions are in Millimeters and (Inches).

Part No. :	LTV-3150 series (REV. 1, MAY 18,2011)

LTE@N|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Taping Dimensions

LTV-3150S-TA

LTV-3150S-TA1

Description	Symbol	Dimensions in millimeters (inches)
Tape wide	W	$160.3(.63)$
Pitch of sprocket holes	P0	4
Distance of compartment	F	7.15)
	P1	2

Part No. :	LTV-3150 series (REV. 1, MAY 18,2011)	Page	6	of

LITE[•J ILITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Onl

Recommended Lead Free Reflow Profile

LTE(O)|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Absolute Maximum Ratings

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Parameter	Symbol	Min	Max	Units
Storage Temperature	$\mathrm{T}_{\text {ST }}$	-55	125	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	-40	100	${ }^{\circ} \mathrm{C}$
Isolation Voltage	$\mathrm{V}_{\text {ISO }}$	5000		$\mathrm{V}_{\text {RMS }}$
Supply Voltage	V_{Cc}	0	35	V
Lead Solder Temperature ${ }^{(9)}$	Tsol		260	C
Input				
Average Forward Input Current	$\mathrm{I}_{\text {F(AVG) }}$		25	mA
Reverse Input Voltage	V_{R}		5	V
Peak Transient Input Current (<1 $\mu \mathrm{s}$ pulse width, 300 pps)	$\mathrm{I}_{\text {(TRAN })}$		1	A
Input Current (Rise/Fall Time)	$\mathrm{t}_{\mathrm{r}(\text { (N) })} / \mathrm{t}_{\mathrm{f}(\mathrm{IN})}$		500	ns
Input Power Dissipation ${ }^{(10)}$	P_{1}		45	mW
Output				
"High" Peak Output Current ${ }^{(1)}$	$\mathrm{I}_{\text {OH(PEAK) }}$	0.6		A
"Low" Peak Output Current ${ }^{(1)}$	$\mathrm{IOL}_{\text {(PEAK) }}$	-0.6		A
Output Voltage	V_{0}		V_{Cc}	V
Output Power Dissipation ${ }^{(11)}$	Po		250	mW
Total Power Dissipation	P_{T}		295	mW

8) At least a 0.1uF or bigger bypass capacitor must be connected across pin 8 and pin 5. Failure to provide the bypass may impair the switching property.
9) $260^{\circ} \mathrm{C}$ for 10 seconds. Refer to Lead Free Reflow Profile
10) Derating Linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.47 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
11) Derating Linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

LITEOS|LITE-ON TECHNOLOGY CORPORATION

Property of Lite-on Only

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Units
Operating Temperature	T_{A}	-40	100	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	15	30	V
Input Current (ON)	$\mathrm{I}_{\mathrm{FL}(\mathrm{ON})}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.0	0.8	V

LITE(O)|LITE-ON TECHNOLOGY CORPORATION

Property of Lite-on Only

Electrical Specifications

Parameters	Test Condition	Symbol	Min	Typ	Max	Units	Figure
Input							
Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	1.2	1.37	1.8	V	15
Input Forward Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$		-1.237		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Input Reverse Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	$B V_{R}$	5			V	
Input Threshold Current (Low to High)	$\mathrm{V}_{0}>5 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	$\mathrm{I}_{\text {FLH }}$			5	mA	9,16,21
Input Threshold Voltage (High to Low)	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	$\mathrm{V}_{\mathrm{FHL}}$	0.8			V	
Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	$\mathrm{C}_{\text {IN }}$		33		pF	
Output							
High Level Supply Current	Output Open,	$\mathrm{I}_{\mathrm{CCH}}$		1	3.5	mA	7,8
	$\mathrm{I}_{\mathrm{F}}=10$ to 16 mA						
Low Level Supply Current	Output Open,	$\mathrm{I}_{\mathrm{CLL}}$		1	3.5	mA	7,8
	$\mathrm{V}_{\mathrm{F}}=-3$ to +0.8 V						
High level output current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-6 \mathrm{~V}\right)$	$\mathrm{IOH}^{\text {I }}$	-0.6			A	2,3,19
Low level output current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+6 \mathrm{~V}\right)$	$\mathrm{IOL}_{\text {O }}$	0.6			A	5,6,20
High level output voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {OH }}$	V_{cc}-1			V	1,3,17
Low level output voltage	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$			$\mathrm{V}_{\mathrm{EE}+1}$	V	4,6,18
UVLO Threshold	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V ${ }_{\text {UVLO+ }}$	11	12.3	13.5	V	22
	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V uvio-	9.5	10.7	12	V	
UVLO Hysteresis		UVLO ${ }_{\text {HYS }}$		1.6		V	

Specified over recommended operating conditions.
All Typical values at $\mathrm{TA}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}$, unless otherwise specified.

LTE@N|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Switching Specifications

Parameter	Test Condition	Symbol	Min	Typ	Max	Units	Figure
Propagation Delay Time to High Output Level	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{Rg}=10 \Omega, \\ & \mathrm{Cg}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \end{aligned}$	$\mathrm{T}_{\text {PLH }}$	0.1	0.3	0.5	$\mu \mathrm{S}$	$\begin{aligned} & 10,11, \\ & 12,13 \\ & 14,23 \end{aligned}$
Propagation Delay Time to Low Output Level		$\mathrm{T}_{\text {PHL }}$	0.1	0.3	0.5	$\mu \mathrm{s}$	
Pulse Width Distortion ${ }^{(7)}$		PWD			0.3	$\mu \mathrm{S}$	
Propagation delay difference between any two parts or channels ${ }^{(4)}$		PDD	-0.30		0.35	$\mu \mathrm{s}$	
Output Rise Time (10 to 90\%)		Tr		75		ns	23
Output Fall Time (90 to 10\%)		Tf		50		ns	
UVLO turn on delay	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V} \end{aligned}$	TuvLo on		2		$\mu \mathrm{s}$	
UVLO turn off delay	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V} \end{aligned}$	TuVLo off		0.3		$\mu \mathrm{s}$	
Common mode transient immunity at high level output ${ }^{(5)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{TA}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	CMH	15	25		kV/ $\mu \mathrm{s}$	
Common mode transient immunity at low level output ${ }^{(6)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{TA}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	CML	15	25		$\mathrm{kV} / \mu \mathrm{s}$	

Specified over recommended operating conditions.
All Typical values at $\mathrm{TA}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}$, unless otherwise specified.

LTE@N|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Isolation Characteristics

Parameter	Test Condition	Symbol	Min	Typ	Max	Units
Withstand Insulation Test Voltage ${ }^{(2)(3)}$	$\begin{aligned} & \mathrm{RH} \leq 40-60 \%, \\ & \mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {ISo }}$	5000			V
Input-Output Resistance ${ }^{(2)}$	$\mathrm{V}_{1 . \mathrm{O}}=500 \mathrm{~V}$ DC	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω
Input-Output Capacitance ${ }^{(2)}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{Cl}_{1 . \mathrm{O}}$		0.92		pF

Notes:

1) Maximum pulse width $=10 \mathrm{us}$, maximum duty cycle $=0.2 \%$.
2) Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.
3) According to UL1577, each optocoupler is tested by applying an insulation test voltage ≥ 6000 Vrms for 1 second (leakage detection current limit, $\mathrm{I}_{-\mathrm{O}} \leq 6 \mathrm{uA}$).
4) The difference between $T_{\text {PHL }}$ and $T_{\text {PLH }}$ between any two LTV-3150 parts under same test conditions.
5) Common mode transient immunity in high stage is the maximum tolerable negative $\mathrm{dV} \mathrm{cm} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high.
6) Common mode transient immunity in low stage is the maximum tolerable positive $\mathrm{dV} \mathrm{cm} / \mathrm{dt}$ on the leading edge of the common mode impulse signal, Vcm , to assure that the output will remain low.
7) Pulse Width Distortion is defined as $\left|T_{P H L}-T_{\text {PLH }}\right|$ for any given device.

LTE@N|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Typical Performance Curves

Figure 1: Output High Voltage drop vs Temperature

Figure 3: Output High Voltage drop vs High Current

Figure 5: Output Low Current vs Temperature

Figure 2: Output High Current vs Temperature

Figure 4: Output Low Voltage vs Temperature

Figure 6: Output Low Voltage vs Low Current

LITEON|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Typical Performance Curves (Continued)

Figure 7: Supply Current vs Temperature

Figure 9: Low to High Threshold Current vs Temperature

Figure 8: Supply Current vs Supply Voltage

Figure 10: Propagation vs Vcc

Figure 11: Propagation vs Input Current

Figure 12: Propagation vs Temperature

LITEOS|LITE-ON TECHNOLOGY CORPORATION

Property of Lite-on Only

Typical Performance Curves (Continued)

Figure 13: Propagation vs Series Load Resistance

Figure 16: Transfer Characteristics

Figure 14: Propagation vs Load Capacitance (nF)

Figure 15: Input Current vs Forward Voltage

ـ\|E@N|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Part No. :	LTV-3150 series (REV. 1, MAY 18,2011)

LITEON|LITE-ON TECHNOLOGY CORPORATION Property of Lite-on Only

Test Circuit (Continued)

Figure 23 : tr, tf, tplh and tphl Test Circuit and Waveforms

Figure 24 : CMR Test Circuit and Waveforms

LITEOS|LITE-ON TECHNOLOGY CORPORATION
 Property of Lite-on Only

Notice

Specifications of the products displayed herein are subject to change without notice.
The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

